Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.
نویسندگان
چکیده
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.
منابع مشابه
Small-Conductance Ca2+-Activated Potassium Type 2 Channels Regulate the Formation of Contextual Fear Memory
Small-conductance, Ca2+ activated K+ channels (SK channels) are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP i...
متن کاملPartial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer's disease transgenic mice.
beta-Site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates amyloid-beta (Abeta) generation that is central to the pathophysiology of Alzheimer's disease (AD). Therefore, lowering Abeta levels by BACE1 manipulations represents a key therapeutic strategy, but it remains unclear whether partial inhibition of BACE1, as expected for AD treatments, can improve memory deficits. In this st...
متن کاملSelective modification of short-term hippocampal synaptic plasticity and impaired memory extinction in mice with a congenitally reduced hippocampal commissure.
The hippocampus is critical for forming new long-term memories, but the contributions of the hippocampal commissure (HC) to memory function and hippocampal synaptic plasticity are unclear. To shed light on this issue, we characterized behavioral memory and hippocampal synaptic plasticity in two inbred mouse strains. BALB/cWah1 mice display a range of corpus callosal defects and an intact HC, wh...
متن کاملModulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system.
Contextual fear conditioning is regulated by the hippocampus, and NR2B, a subunit of the NMDA receptor (NR), is involved in this process. We show that acute stress modulates tissue plasminogen activator (tPA) activity in the hippocampus by inducing expression of its inhibitor, plasminogen activator inhibitor-1. Acute stress increases NR2B expression and ERK1/2 phosphorylation, a classical marke...
متن کاملSynaptic plasticity associated with a memory engram in the basolateral amygdala.
Synaptic plasticity is a cellular mechanism putatively underlying learning and memory. However, it is unclear whether learning induces synaptic modification globally or only in a subset of neurons in associated brain regions. In this study, we genetically identified neurons activated during contextual fear learning and separately recorded synaptic efficacy from recruited and nonrecruited neuron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 43 شماره
صفحات -
تاریخ انتشار 2014